Forensic Science Research main image

Forensic Science Research

About

Our work in forensic science is driven by our backgrounds as practitioners – either working with UK police, forensic service providers or through academia. We are interested in applied science projects that have practical applications in forensic case work scenarios.  Much of our research is based around Masters and Masters by Research projects, often in collaboration with industrial partners. We are part of the University’s Crime, Justice and Security accelerated development area. 

Research Areas


Trace evidence

Current research focusses upon several areas of developing and utilising techniques for the analysis of trace evidence, including using Video Spectral Comparator Technology for the determination of distinguishing features in questioned documents, the effects of hand sanitiser on the deposition of fingerprints, and the evaluation of marks such as fingerprints after submersion in water.   Our research relating to trace evidence also includes methodologies for its recovery from crime scenes and exhibits, novel methods of analysis and the critical evaluation of its evidential significance.  Research areas include forensic geoscience, soil analysis, microscopic techniques to determine damage sustained to textiles and fabrics in a forensic context, the recovery of fingerprints and footwear marks and forensic entomology.

Evidential analysis of soils from footwear


Evidential analysis of soils from footwear

Toxicology

Current projects include the development and application of drug screening methods using state-of-the-art instrumentation involving chromatographic and mass-spectroscopic techniques and the use of the Joint Expert Speciation System to determine the low molecular mass metal-ion species which are present in a range of biological fluids including saliva and blood plasma, looking specifically at the bioavailability of species which may pose toxicity.  We are currently studying the effects that the mouthing of toys and pacifiers may have upon the production of highly bioavailable lead and cadmium species in the mouths of infants. Several active projects including the evaluation of the stability of cocaine in urine when stored under specified conditions, the detection of ethylene glycol via GC-MS in a variety of different substances, the effect of storage on antidepressants in blood and their detection in overdose scenarios, and computer aided chemical speciation analysis of the risk posed by radionuclides in blood plasma.  

Female Scientist in the Lab GettyImages-648181930.jpg



Biological fluids and DNA

Forensic research in biological fluids and DNA includes the evaluation of biological fluids using spectroscopic techniques and alternative light sources.  Research in this area currently focusses upon method development and applications in relation to establishing the authenticity of foodstuffs, and the detection of biological fluids such as semen and blood on clothing after exposure to different environmental conditions for periods of time using traditional presumptive and spectroscopic methods of analysis.  We are also currently investigating the impact of simulated exposure to a wide variety of external environmental factors upon the ability to detect blood on clothing items through a time and weathering-effects study. We are interested in determining the authenticity of a range of foodstuffs including meat, vegetarian and vegan products using modern DNA profiling techniques.


Stock photo DNA sample being pipetted into petri dish with DNA gel in background GettyImages-477335408.jpg



Collaborations

Our multidisciplinary research involves collaboration with industry, academia and Government. These include:

  • Industry:  Vidence Inc,  AWE Ltd, Tescan Ltd.
  • Government:  UK National Crime Agency, FBI (USA).
  • UK Universities:  Keele, Queens University Belfast, Staffordshire, Hutton Institute.

Current Projects

Forensic soil characteristics can allow the identification of unknown geographical locations.jpg


Forensic soil characteristics can allow the identification of unknown geographical locations

Donnelly, L., Pirrie, D., Harrison, M., Ruffell, A. & Dawson, L.  (eds) 2021.  A guide to forensic geology.  Geological Society, London.


Traditional soil forensics allows the comparison of soil characteristics from known locations such as crime scenes with soil recovered exhibits seized during an investigation.  However, because there is a very strong linkage between soil characteristics, the underlying bedrock geology and near surface processes, it is also potentially possible to use soils to predict geographical locations based on soil samples of unknown origin.  Such analysis can be of use in missing victim murder enquiries where trace evidence recovered from items used during the criminal activity can be used to lead the investigator towards the location of a clandestine grave.

Fragments of concrete constructed using fly ash residue imaged using electron microscopy and automated mineralogy.jpg


Fragments of concrete constructed using fly ash residue imaged using electron microscopy and automated mineralogy

Pirrie, D., Pidduck, A., Crean, D.E. & Nicholls, T.M.  2019. Identification and analysis of man-made geological product particles to aid forensic investigation of provenance in the built environment.  Forensic Science International, 305, 1-15.


Surfaces in the urban and semi-urban environment are covered with particulate materials including geological and biological soil particles, but also man-made anthropogenic particles, such as fragments of building materials (e.g. road stone, tarmac, concrete, building stone etc), domestic wastes (e.g. plastics, metals, paints), industrial wastes from both current and past activity (e.g. metals, coke, airborne particulates etc).  

What is not known is whether or not such particles can be used in criminal investigations – what is the evidential significance of these particle types when recovered from exhibits.  This research project is looking at the origin and significance of urban particulates.


Illegal mining.  Image by Julien Harneis is licensed under CC BY-SA 2.0.jpg

Illegal mining. Image by Julien Harne is is licensed under CC

DiMaggio, R.M., AL Naimi, K.S., Barone, P.M., Da Silva, F.A., Dawson, L.A., Dixon, R., Donnelly, L.J., Fitzpatrick, R., Gradusova, O., Gallego, C.M.M., Nesterina, E., Peleneva, M., Pirrie, D., Ruffell, A., McKinley, J., Sagripanti, G., Schneck, B., Sugita, R., Ushacova, O. & Villalba, D.  2017. Global developments in forensic geology. Episodes, 40, 120-131.


Mining underpins the supply of raw materials used by society.  However, there can also be globally significant criminal activity associated with mining.  At its simplest this includes artisanal mining, outside of any regulatory control and with minimal environmental or health and safety constraints.  

More significantly, and of global concern is the trade in the so-called “conflict minerals” the sale of which supports global conflict and significant human rights abuses. In addition, globally mined commodities may be stolen and then resold into the global supply chain, with the revenue earned supporting terrorism and major international crime cartels.  This research funded by the International Union of Geological Sciences is aiming to understand the global scale of mining crime and then identify measures to manage, mitigate and detect such criminal activity.